Integration of Ordinary Differential Equations
ثبت نشده
چکیده
where z is a new variable. This exemplifies the procedure for an arbitrary ODE. The usual choice for the new variables is to let them be just derivatives of each other (and of the original variable). Occasionally, it is useful to incorporate into their definition some other factors in the equation, or some powers of the independent variable, for the purpose of mitigating singular behavior that could result in overflows or increased roundoff error. Let common sense be your guide: If you find that the original variables are smooth in a solution, while your auxiliary variables are doing crazy things, then figure out why and choose different auxiliary variables. The generic problem in ordinary differential equations is thus reduced to the study of a set of N coupledfirst-order differential equations for the functions yi , i = 0,1, . . . , N 1, having the general form
منابع مشابه
Reduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملNumerical inversion of Laplace transform via wavelet in ordinary differential equations
This paper presents a rational Haar wavelet operational method for solving the inverse Laplace transform problem and improves inherent errors from irrational Haar wavelet. The approach is thus straightforward, rather simple and suitable for computer programming. We define that $P$ is the operational matrix for integration of the orthogonal Haar wavelet. Simultaneously, simplify the formulaes of...
متن کاملInvariant functions for solving multiplicative discrete and continuous ordinary differential equations
In this paper, at first the elemantary and basic concepts of multiplicative discrete and continous differentian and integration introduced. Then for these kinds of differentiation invariant functions the general solution of discrete and continous multiplicative differential equations will be given. Finaly a vast class of difference equations with variable coefficients and nonlinear difference e...
متن کاملChebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کاملAPPLICATION NEURAL NETWORK TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS
In this paper, we introduce a hybrid approach based on neural network and optimization teqnique to solve ordinary differential equation. In proposed model we use heyperbolic secont transformation function in hiden layer of neural network part and bfgs teqnique in optimization part. In comparison with existing similar neural networks proposed model provides solutions with high accuracy. Numerica...
متن کاملViewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials
In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.
متن کامل